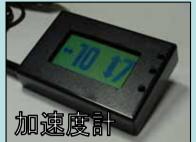
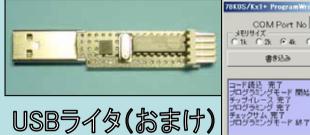
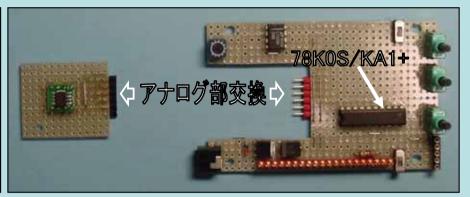
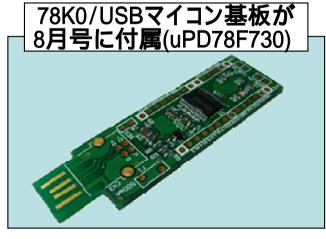
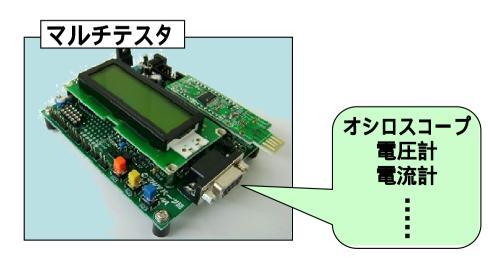

付属78K0/USBマイコン基板を使ったマルチテスタの製作


1. マルチテスタ誕生の経緯 2. マルチテスタ概要 3. マルチテスタ企画時の仕様 4. ブレッドボードエリアの使用法 5. ファンクションジェネレータの出力 7. LCD 128×64 Dot 改造 8. USB接続


All Flash8Bit小ピンマイコン(78K0S/KA1+) 使用の温度計・オシロ・加速度計







^{2-1.これが78K0 マルチテスタ基板だ!}

電流計(第3章)

1Aまでの電流を約5mA単位で測定して、 値を表示する

電圧計(第3章)

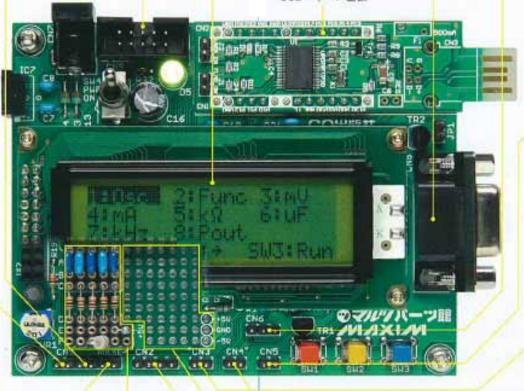
5Vまでの電圧を約5mV単位で測定して、 値を表示する

抵抗計(第4章)

999kΩまでの抵抗を1kΩ単位で測定して、 値を表示する

容量計(第4章)

9.999 xFまでのコンデンサの容量を 0.004 xF単位で測定して、値を表示する



MINICUBE2接続コネクタ(第6章) 純正デバッグ・エミュレータを使った インサーキット・デバッグが可能

> 122×32ドット・ グラフィック 液晶モジュール

ROMライタ機能(第6章) 78KOマイコンのフラッシュ ROM よ会領域書き換えできる

8月号付録78K0 USBマイコン基板

ブレッドボード・エリア 回路構成や定数を 簡単に変更できる ユニバーサル・エリア OPアンプ1個程度の回路なら マルチテスタ基板上に追加できる

パルス出力(第5章)

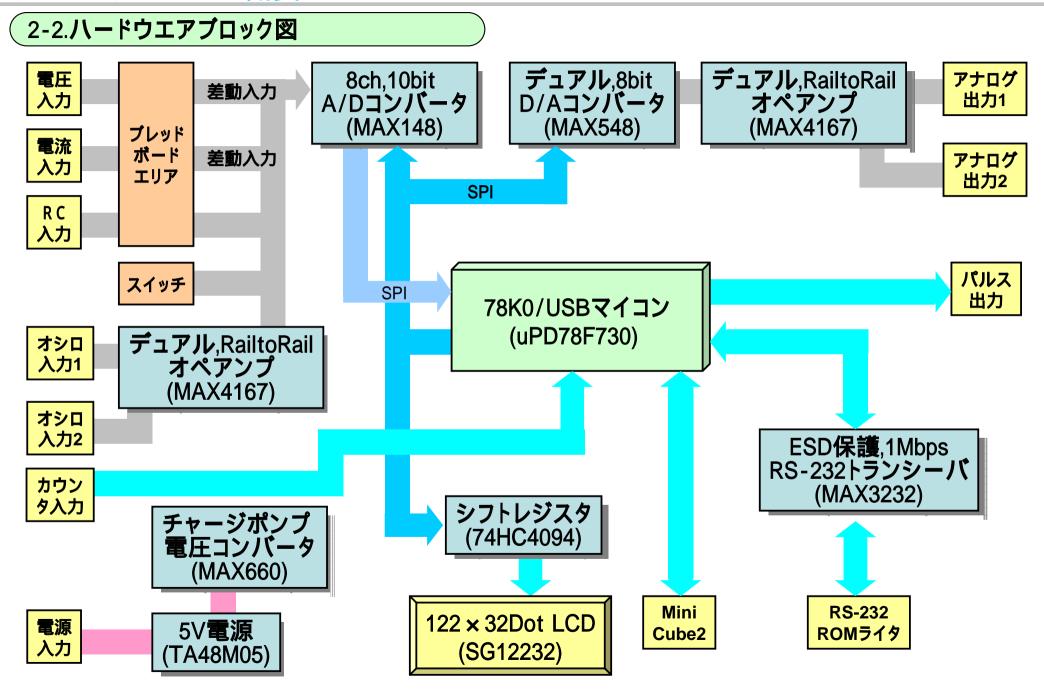
120kHz程度までの方形波を出力できる。 出力は5V振幅とオープン・コレクタ出力 の2種類

周波数カウンタ(第5章)

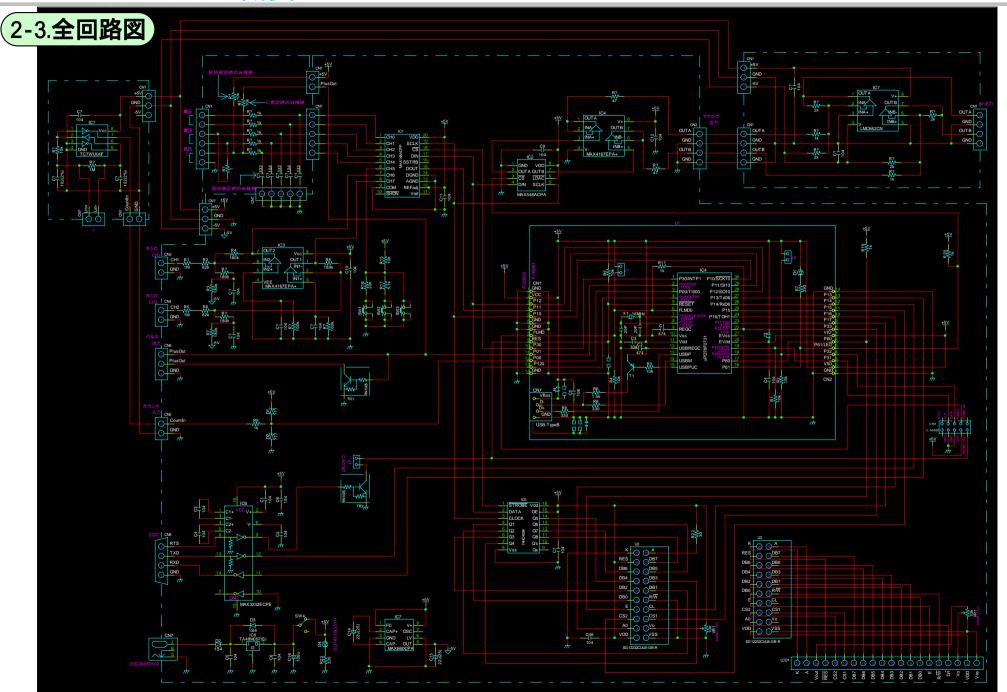
500kHz程度までの信号の周波数を測定 できる

オシロスコープ(第1章)

信号の波形をグラフィック液晶に表示する。信号レベルは±12Vまで入力可能



ファンクション・ジェネレータ(第2章) 15〜620Hzの正弦波、のこぎり波、三角 波を出力できる。振幅は5V間定


SME LONG SME EXIL

2.マルチテスタ概要

2.マルチテスタ概要

〔2-4.マルチテスタの仕様

Νο.	計測機能	仕様	画面イメージ	操作	目標仕様
0	メインメニュ	実行機能を選択する	Voltage Frequency. Current Oscilloscope Resistance FNC Capacitance Generator SW1:Select SW2:Select SW3:	SW1にて機能選択 次移動 SW2にて機能選択 前移動 SW3にて機能実行	
1	電圧計	計測レンジ∶0~+5V 表示∶0mV~5000mV	2543mV SW3: Exit	SW3にてメインメニュへ移行	
2	電流計	計測レンジ: 0 ~ 1 A 表示: 0mA ~ 1000mA	468mA SW3:Exit	SW3にてメインメニュへ移行	
3	抵抗値計	計測レンジ:0~999k 表示:0k ~999k	510k SW3:Exit	SW3にてメインメニュへ移行	計測レンジ: 0 ~ 1 M 表示:0 ~ 9999 10.0k ~ 99.9k 100k ~ 999k (オートレンジ)
4	容量計	計測レンジ: 0 ~ 9 . 9 9 9 u F 表示: 0 . 0 0 0 uF ~ 9 . 9 9 9 uF	0.048uF	SW3にてメインメニュへ移行	計測レンジ: 0 ~ 999uF 表示: 0 . 000uF ~ 9 . 999uF 10 . 0uF ~ 999 . 9uF (オートレンジ)
5	周波数計	計測レンジ: 0 ~ 4 MHz 表示: 0 kHz ~ 4 0 0 0 kHz	2864kHz SW3: Exit	SW3にてメインメニュへ移行	計測レンジ: 0 ~ 4MHz 表示: 100kHz ~ 4000kHz 10.0kHz ~ 99.9kHz 0Hz ~ 9999Hz (オートレンジ) 周波数/周期表示 切替可
6	オシロスコープ	状態表示:(RUN),(STOP) 計測ch:(ch1)固定 計測レンジ:5V/Div ~ 0.1V/Div 時間レンジ:100us/Div ~ 1s/Div トリガレベル:0 ~ 100% トリガエッジ: 固定 モード:オート・ロール グランドボジション変更:センタ固定	RUN CH1:0.5V/d AUTO 500us/d	SW1にて設定項目選択 SW2にて設定値アップ SW3にて設定値ダウン SW3長押しにてメインメニュへ移行	状態表示:(RUN),(STOP) 計測ch:(ch1),(ch2),(ch1+ch2) 計測レンジ:5V/Div ~ 0.1V/Div 時間レンジ:100us/Div ~ 1s/Div トリガレベル:0 ~ 100% トリガエッジ: モード:オート・ノーマル・シングル・ロール グランドボジション変更:0 ~ 100%
7	ファンクション ジェネレータ	振幅:5.0V固定 オフセット:2.5V固定 周波数:0kHz~20.0kHz モード:Sin波、方形波、ノゴギリ波	Mode Sin 周波数:10.0kHz SW1:Select SW2:Up SW3: LongSW3:Exit	SW1にて設定項目(モード・設定周波数の桁)選択 SW2にて設定値アップ SW3にて設定値ダウン SW3長押しにてメインメニュへ移行	振幅:0.0~+5.0V オフセット:0.0~+5.0V 周波数:0~9999Hz 10.0kHz~20.0kHz 周波数/周期表示 切替可 モード:Sin波、方形波、三角波、ノゴギリ波
8	基準周波数 発信器	振幅:0 5V固定 周波数:0kHz~4000kHz	2486 KHZ SW1: Select SW2: Up SW3: LongSW3: Exit	SW1にて設定項目(設定周波数の桁)選択 SW2にて設定値アップ SW3にて設定値ダウン SW3長押しにてメインメニュへ移行	振幅:0 5V固定 周波数:0~9999Hz 10.0kHz~99.9kHz 100kHz~4000kHz 周波数/周期表示 切替可 デューティ:0~100%

目標仕様を かなり 下回っている

せっかくの USBマイコン なのに通信を 利用した 機能がない

その理由は?

3.マルチテスタ企画時の仕様

3-1.マルチテスタ企画時の仕様

No.	実装計測機能	仕様
1	電圧計	計測レンジ: ± 5 V(オシロ入力使用では、± 3 0 V)
2	電流計	計測レンジ: M a x 5 A
3	抵抗値計	分圧抵抗(R12)未最適化の為、不明
4	導通チェッカ	検出抵抗値未定
5	ダイオード/LEDチェッカ	分圧抵抗(R12)未最適化の為、不明
6	容量計	分圧抵抗(R12)·計測周波数未最適化の為、不明
7	インダクタンス計	分圧抵抗(R12)·計測周波数未最適化の為、不明
8	周波数計	Max4MHz程度(しきい値設定機能付き±30V)
9	ロジックアナライザ	8ch入力、サンプリング周波数はソフト次第
10	オシロスコープ	2V/Div ~ 200mV/Div、100us/Div ~ 100ms/Div
11	データロガー	仕様未検討
12	温度計	0~70 程度
13	バッテリチェッカ	仕様未検討(電流計測端子で計測?)
14	ファンクションジェネレータ	±5V、20kHzMax、Sin波、方形波、三角波、ノゴギリ波
15	周波数特性測定器	ファンクションジェネレータ出力とオシロ入力で測定
16	基準周波数発信器	0~5Vとオープンコレクタの方形波出力、Max4MHz程度
17	時計	24時間時計(バックアップなし?)
18	表示器	USB通信でLCDヘビットマップを表示
19	USB-232C変換器	USB通信を232C通信へ双方向変換
20	USB - パラレル変換器	USB通信をパラレル出力、8ch出力
21	NEC製簡易プログラムライタ接続	メーカー動作保証なし?
22	MINICUBE2接続	動作未検討

C言語プログラム:11月号「C言語版78K0マルチテスタの製作」

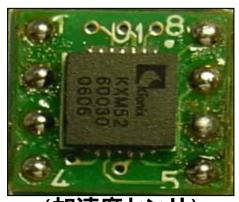
USB通信:10月号~「もっと!付録基板 パソコンからUSBマイコンを動かそう!」

C言語プログラミングで 多機能・高精度化

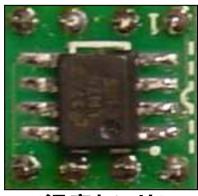
✓ 浮動小数点ライブラリが✓ 大き〈て基本機能のみでも✓ ROMに入りきらない

部品費コストアップ!

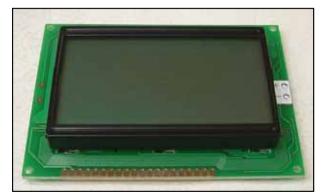
機能限定して オールアセンブリ言語 にて再プログラム


USB**通信は** 「もっと!付録基板」で フォロー

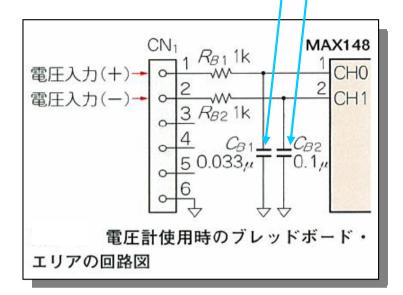
3.マルチテスタ企画時の仕様


3-2.マルチテスタその他の企画

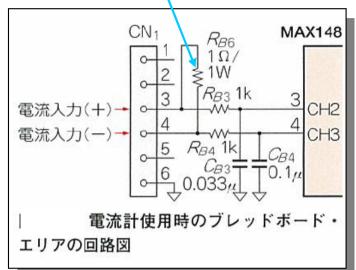
基板実装面積・部品費コスト・部品供給メーカ等の理由から不採用となった機能(参考)


No.	非実装計測機能	仕様
1	湿度計	センサ不明
2	光度計	センサ不明
3	シーケンサ	仕様不明(USB - パラレル変換器と同じ?)
4	デシベルメータ	仕樣不明
5	基準トーン発生器	仕様不明(ファンクションジェネレータと同じ?)
6	自動キーヤー	仕様不明
7	カーブトレーサ	仕樣不明
8	トレンドキャプチャ	仕様不明(データロガーと同じ?)
9	数字 / アルファベットのライブラリ	仕様不明(表示器と同じ?)
10	加速度計	センサ不明
11	回転計	センサ不明
12	距離計	センサ不明
13	電池充電器	仕様不明(大電流出力なし)

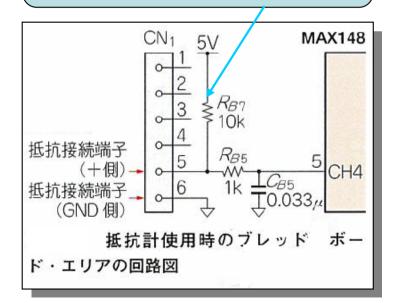
(加速度センサ)

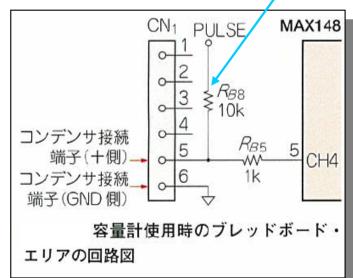


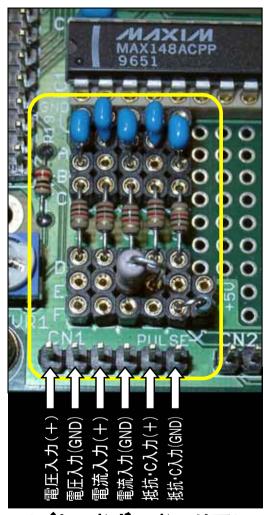
(温度センサ)



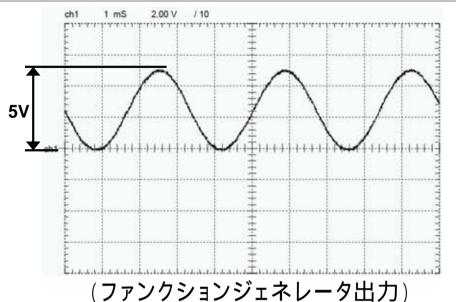
(128 × 64Dot LCD)

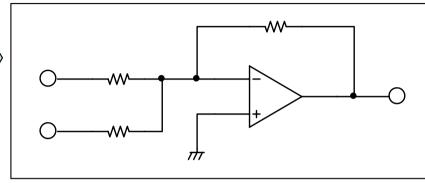

抵抗に変更すると入力レンジが拡大

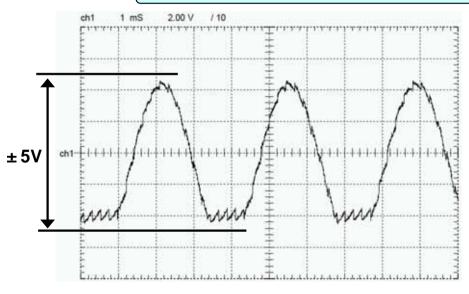

抵抗值 大:微小電流 小:大電流

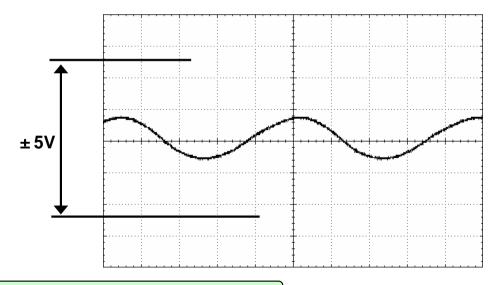


抵抗值 大:高抵抗 小:低抵抗

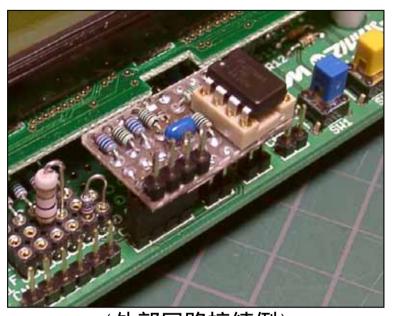

抵抗値 大:小容量 小:大容量

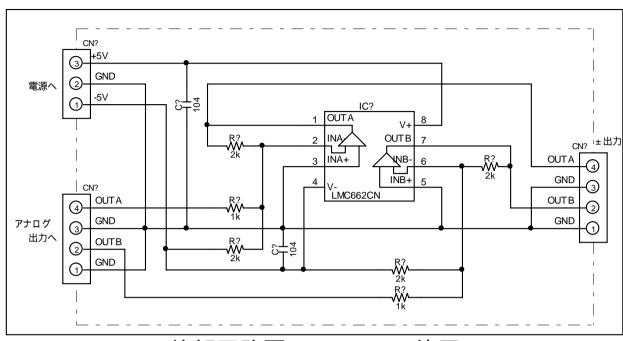

(プレッドボードエリア)

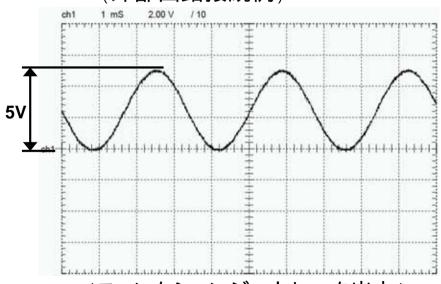



オペアンプで (2倍増幅) + (-5Vオフセット)

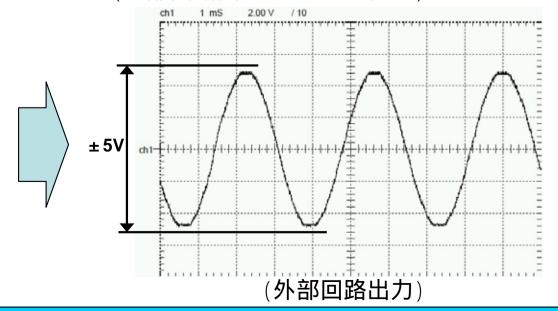
MAXIM社供給可能オペアンプに最適品(パッケージ・特性)がない




標準装備は、ボルテージフォロアのみとする



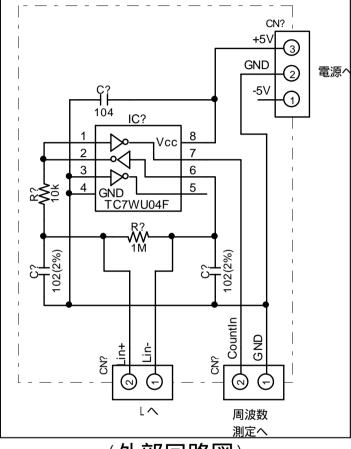
外部回路を追加



(外部回路接続例)

(ファンクションジェネレータ出力)

(外部回路図 LMC662CN使用)



TC7WU04Fの実装がネックで標準装備を断念

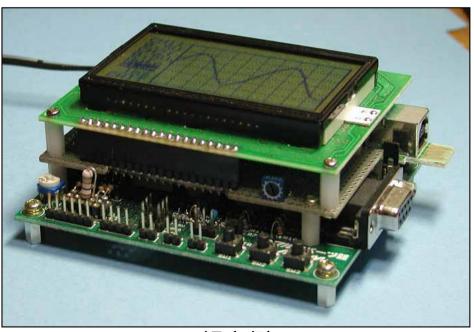
公称值	計測値 (uH)	
101	88	
101	96	
181	180	
331	336	
561	540	
102	1036	

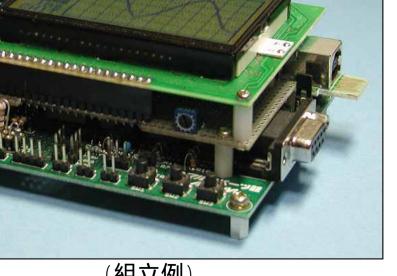
(測定結果)

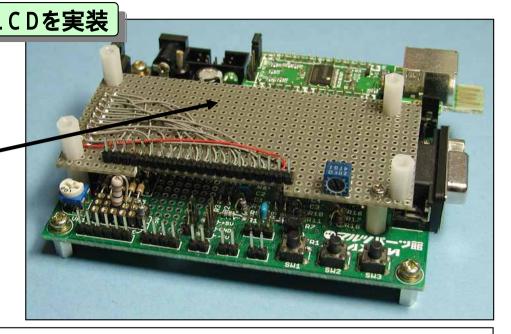
(外部回路接続例)

インダクタ計動作原理

(LCコルヒッツ型発振回路)

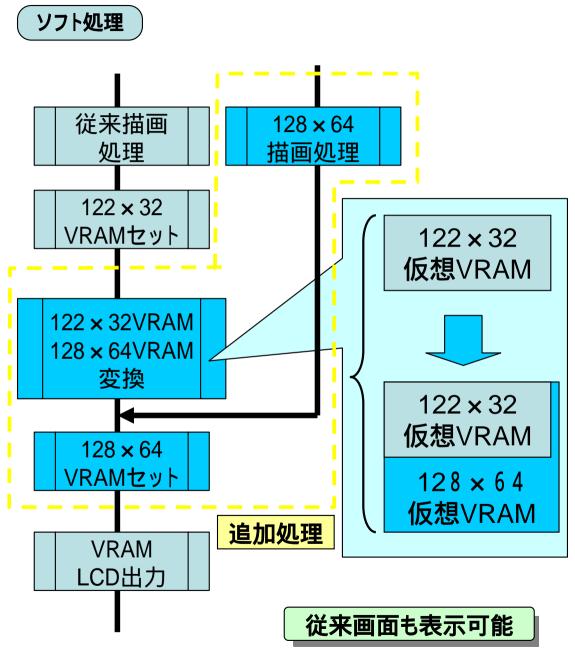

(外部回路図)

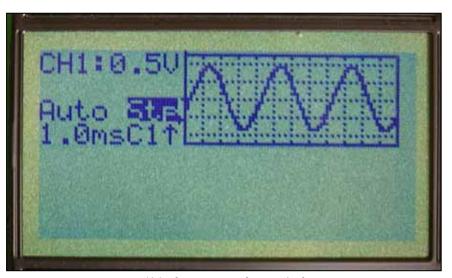

外部回路にCMOSインバータによるLCコルヒッツ型発振回路を追加し、周波数測定機能を使用すること によりインダクタ値を計測します.発振回路の発振周波数は、

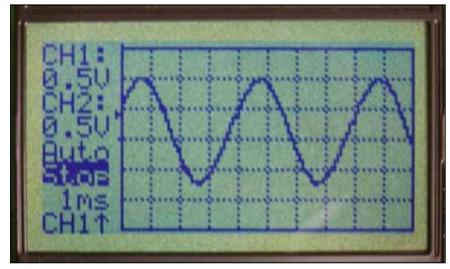

発振周波数=1/(2 × × $\overline{\text{C1} \times \text{C2}/(\text{C1}+\text{C2}) \times \text{L}}$) (C1,C2は、基準コンデンサで1000pF)より、 CPUのパルス幅測定機能にて計測したパルス幅測定カウンタ値をPとすると、インダクタ値は、 インダクタ値 = P²/5.053237455 (uH) となり、この値をLCDに表示しています.

コストがネックで標準装備を断念した128×64Dot LCDを実装 128 × 64Dot L C D 接続変換基板

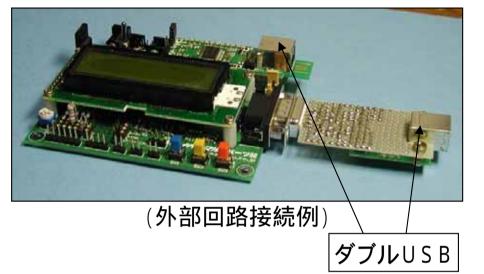
マルチテスタ基板

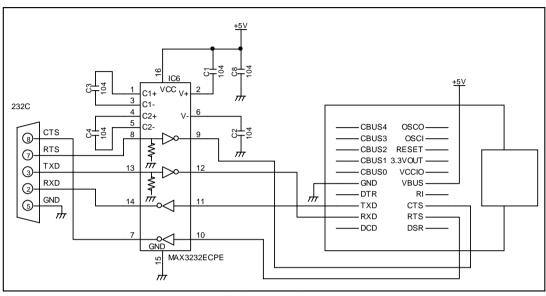





(組立例)

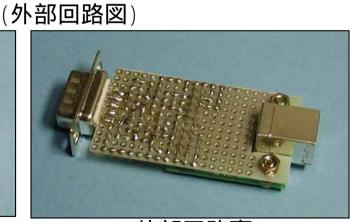
(外部回路図)




(従来画面表示例)



(128×64画面表示例)


簡単にUSB通信をする(マイコン上ではUART制御でOK) ROMライタWriteEZ3をUSBで使う

(WriteEZ3画面)

(外部回路裏)

パソコンとの接続にUSB-232C変換器を使用する場合には、FTDI社製のチップを採用したタイプのものし か使用できませんので、注意が必要です.更にPCI等で増設した232Cポートでは、使用できない(ライター ソフトでポートを選択できない)場合がありますので、こちらにも注意が必要です.

(外部回路表)