
A Data Logger System Report
in the Rocket Project

By: 4AEPD001 Khamphong Khongsomboon
 Advisor: Assoc. Prof. Dr. Naohiko Shimizu

Department of Communications Engineering,
School of Information Technology and Electronics,

Tokai University.
2004-2005

Contents

1. Introduction...1
2. Experiment requirement..1
3. The Data Logger System...1

3.1. Power supply section.. ...1
3.2. Controller section..2

3.2.1. I/O port...4
3.2.2. Interface..4

3.2.2.1. The SPI Interface...4
– Initial SPI interface subroutine...4
– The SPI transmission subroutine..5
– The SPI reception subroutine...6

3.2.2.2. The USART interface..6
– Initial USART interface subroutine..6
– The USART Transmission subroutine......................................9
– The USART Reception subroutine...9

3.2.3. Memory...10
3.2.4. Interrupt...10
– Initial setup Timer/Counter2 subroutine..11

3.3. GPS section...11
3.4. Store data section..11

3.4.1. The EEPROM specification...14
3.4.2. The EEPROM interface..15

3.5. Radio wave section...16
3.6. Transmission-Reception data to PC section..16

4. Program structure and subroutine..17
 4.1. The Main program..17

4.1.1. Initial setup process..17
4.1.2. Main routine process..17

4.2. The subroutine program..19
4.2.1. Timer/Counter2 interrupt subroutine..19
4.2.2. Check 3D position-fixing and more than 5 satellites subroutine......19
4.2.3. Check EEPROM emptied subroutine...21
4.2.4. Write START command into EEPROM subroutine........................21
4.2.5. Write STOP command into EEPROM subroutine...........................21
4.2.6. Write data into EEPROM subroutine...21
4.2.7. Check GPS data packet subroutine...23
4.2.8. Write EEPROM enable subroutine...25
4.2.9. Write START command subroutine...25
4.2.10. Increment EEPROM address subroutine..25
4.2.11. Setup GPS (Periodical data output) subroutine..............................25
4.2.12. Limited SRAM address subroutine..26
4.2.13. Delay time 1sec..26

 5. Conclusion...26

A Data Logger System
1. Introduction

The Rocket Project is a project for development embedded systems, software,
technical education and teaching material with record GPS data to find orbit trace of the
rocket. Most of all the development embedded systems we do not have detail of the
development and process therefore we can not get a chance for skill up from elementary to
higher based on a real development and process. So this project is accommodating enforce the
development experiment with multiple engineering and managers. We have to record the
progress and then make a teaching material for development education and embedded
systems.

2. Experiment requirement
In the experiment technical used record data when the rocket launch out to find the

maximum height of the rocket so we need a recorder for record data from GPS with serial
interface. The recorder we call Data Logger System or Data Logger Circuit. The experiment
provided to put the circuit inside the rocket body before launch out. In this case the circuit
must be fit size less than 30x30mm because diameter of the rocket is only 38mm, it should be
light that mean the weight of the circuit must be less than 40g and also it must have
waterproof and floating box for prevent the water flow inside and float when the rocket fall
down to the sea.

The proposed of the circuit experiment:
- Used controller record orbit data from GPS to stoker data. The system must record

GPS data 1 packet per 1second, in a GPS data packet has several data include position data,
date/time data, GPS satellite information data and error index information data so we need to
receive all of GPS data therefore transmit that data to PC for analysis and find the maximum
height of the rocket fly out.

- Observation orbit of rocket from ground by 3 angles, the ground record can calculate
the maximum height of the rocket to implement the quality software to the system.

3. The Data Logger System
In the data recorder or Data Logger System we need a good performance system for

record data from GPS correctly and power supply can supply to the system as long as possible.
The Data Logger System, main objective of this system used to be a recorder for record the
rocket orbit and at the same time recorded the maximum height data from ground to the
rocket. The Data Logger System consists of several sections as show in figure 1 show the Data
Logger System diagram. It has several sections to combine a system such as: Power supply
section, GPS section, Controller section, Store data section, Radio wave section and
Transmission-Reception data to PC section.

3.1. Power supply section
According to GPS specification and period time for store data the GPS need 3.3V and

88mA when operation in continuous mode, therefore the power supply of system must be
3.3V and can supply to system more than 30minutes at the current between 150mA-200mA
because the GPS sink current a lot, spend long time for catch the satellite and need a few

1

minute for preparation the rocket launch and also feed current to every section of the Data
Logger System.

Controller
section

Radio wave
section

GPS
section

Store data
section

IrDA
sectionPC

Power supply
section

IrDA section

Controller section

Store data section
Radio wave section

GPS section

Figure1: Show the Data Logger System diagram

3.2. Controller section
The controller section is a microprocessor there is a main control of the system and

also a center interface of a section to another section such as receive data from GPS section
than transmit data into store data section, receive command from PC and than control the
process as that command and etc. This microprocessor use programming for interface and
control the system so it is the most importance of the system. In the development software, the
programming function we must define every sequence process to enforce the system work and
the system should have build-in test and hardware self check to confirm the system is ready
start. If the test is fail it must be show alarm and if the test is passed the system go on to next
process or wait for start system.

Consider the microprocessor specification will depend on the product in this project
we select ATmega16L of ATmel cooperation product and it is 8-bit Microcontroller with 16K
Bytes In-System Programmable Flash:

Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture
– 130 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

2

• Nonvolatile Program and Data Memories
– 16K Bytes of In-System Self-Programmable Flash
Endurance: 1,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 Bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
– 1K Byte Internal SRAM
– Programming Lock for Software Security
• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels (TQFP Package Only)
2 Differential Channels with Programmable Gain (1x, 10x, 200x) (TQFP Package
Only)
– Byte-oriented 2-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
• I/O and Packages
– 32 Programmable I/O Lines
– 40-pin PDIP and 44-lead TQFP
• Operating Voltages
– 2.7 - 5.5V (ATmega16L)
– 4.5 - 5.5V (ATmega16)
• Speed Grades
– 0 - 8 MHz (ATmega16L)
– 0 - 16 MHz (ATmega16)

3

Figure 2: Pinouts ATmega16

3.2.1. I/O port
Make sure that you have enough I/O port for interface or access to the external section.

Consider the initial setup and be long to schematic circuit connection.

3.2.2. Interface
Must be fast enough and specified as being able to operate at a certain maximum baud

rate. The serial interface has several interface as SPI (Serial Peripheral Interface) interface,
USART (Universal Asynchronous and Synchronous serial Receiver and Transmitter) interface
and etc.

3.2.2.1. The SPI Interface
The SPI (Serial Peripheral Interface) interface that allows high-speed synchronous data

transfer. Before interface the SPI must have initial setup.

- Initial SPI interface subroutine.
-Step 1: Setup MOSI (Master-Out Slave-In), SCK (Signal Clock) and CS (Chip Select)

pin are output be long to ports name.
-Step 2: Set SPCR with 0101 0000 or 0x50
-Step 3: Return subroutine

4

Show some parameter in SPCR (SPI Control Register)

• Bit 7 - SPIE: SPI Interrupt Enable
Set this bit is zero causes the SPI interrupt is not need to be executed.
• Bit 6 - SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.
• Bit 5 - DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
• Bit 4 - MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when writ-
ten logic zero. If SS is configured as an input and is driven low while MSTR is set,
MSTR will be cleared, and SPIF in SPSR will become set. The user will then have to
set MSTR to re-enable SPI master mode.
• Bit 3 - CPOL: Clock Polarity
Writing the CPOL is zero, SCK is low when idle.
• Bit 2 - CPHA: Clock Phase
The settings of the clock phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK.
• Bits 1,0 - SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a master. SPR1 and
SPR0 have no effect on the slave. The relationship between SCK and the Oscillator
Clock frequency fosc. When set SPR1 and SPR0 is zero, the SCK will be equal to
fosc/4 at the same time SPI2X will be clear.

- The SPI transmission subroutine
When configured as a Master, the SPI interface has no automatic control of the SS

line. This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware
shifts the 8 bits into the Slave. After shifting one byte, the SPI clock generator stops, setting
the end of transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR register
is set, an interrupt is requested. The Master may continue to shift the next byte by writing it
into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last in-
coming byte will be kept in the buffer register for later use.

The programming process of SPI transmission subroutine
-Step 1: Move data into SPDR
-Step 2: Polling until SPIF flag in SPSR register is set that is transmission data

complete.
-Step 3: Return subroutine

5

Show some parameter in SPSR (SPI Status Register)

• Bit 7 - SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if
SPIE in SPCR is set and global interrupts are enabled. If SS is an input and is driven
low when the SPI is in master mode, this will also set the SPIF flag. SPIF is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively,
the SPIF bit is cleared by first reading the SPI status register with SPIF set, then ac-
cessing the SPI Data Register (SPDR).

- The SPI reception subroutine
This process used the same routine with SPI transmission process but when a serial

transfer is complete, finally reading data in SPDR.

The programming process of SPI reception subroutine
-Step 1: Move a Dummy data into SPDR
-Step 2: Polling until SPIF flag in SPSR register is set
-Step 3: Read data in SPDR register that is reception data complete
-Step 4: Return subroutine

3.2.2.2. The USART interface
- Initial USART interface subroutine

-Step 1: Setup U2X flag in UCSRA is set for double speed
-Step 2: Set UBRR with 51 for set Baud rate at 9600bps
-Step 3: Set RXCIE, RXEN and TXEN flag in UCSRB register to one for enable

interrupt receiver, enable receiver and transmitter.
-Step 4: Set UMSEL, UCSZ1 and UCSZ0 flag in UCSRC register to one for set

asynchronous mode operation, format frame, 8bit data and 1stop bit.
-Step 5: Return subroutine

As bellow show initial setup the USART register parameter

- Setup Double Speed Operation (U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit
only has effect for the asynchronous operation. Set this bit to zero when using synchronous
operation.
 Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the receiver

6

will in this case only use half the number of samples (reduced from 16 to 8) for data sampling
and clock recovery, and therefore a more accurate baud rate setting and system clock are re-
quired when this mode is used. For the transmitter, there are no downsides.

• Bit 1 - U2X: Double the USART transmission Speed:
This bit only has effect for the asynchronous operation. Write this bit to zero

when using synchronous operation. Writing this bit to one will reduce the divisor of
the baud rate divider from 16 to 8 effectively doubling the transfer rate for asyn-
chronous communication.

- Setup Baud Rate

As the specification of GPS used 9600bps serial interface and the equations in table1
we will have the USART Baud Rate Register (UBRR)

UBRR =
8BAUD

fosc - 1

UBRR =
8x9600

4MHz
- 1

UBRR = 51

Where, the system clock frequency is 4MHz

Table 1: Equations for Calculating Baud Rate Register Setting

7

– Enable receiver, transmitter and interrupt receiver

• Bit 7 - RXCIE: RX Complete Interrupt Enable
Writing the RXC flag to one for enables Receive Complete interrupt. A USART Re-
ceive Complete interrupt will be generated only if the RXCIE bit is written to one, the
global interrupt flag in SREG is written to one and the RXC bit in UCSRA is set.
• Bit 6 - TXCIE: TX Complete Interrupt Enable
Do not need TX interrupt enable so writing this bit to zero
• Bit 5 - UDRIE: USART Data Register Empty Interrupt Enable
Do not need UDRIE interrupt enable so writing this bit to zero
• Bit 4 - RXEN: Receiver Enable
Writing this bit to one enables the USART receiver. The receiver will override normal
port operation for the RxD pin when enabled. Disabling the receiver will flush the re-
ceive buffer invalidating the FE, DOR and PE flags.
• Bit 3 - TXEN: Transmitter Enable
Writing this bit to one enables the USART transmitter. The transmitter will override
normal port operation for the TxD pin when enabled. The disabling of the transmitter
(writing TXEN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the transmit shift register and transmit buffer register
do not contain data to be transmitted. When disabled, the transmitter will no longer
override the TxD port.
• Bit 2 - UCSZ2: Character Size
Writing UCSZ2 bits is zero for sets the number of data 8 bits (character size) in a
frame the receiver and transmitter use.
• Bit 1 - RXB8: Receive Data Bit 8
When receive serial frames with 8 data bits must be set this bit is zero
• Bit 0 - TXB8: Transmit Data Bit 8
When transmit serial frames with 8 data bits must be set this bit is zero

- Setup frame format data

• Bit 7 - URSEL: Register Select
This bit selects between accessing the UCSRC or the UBRRH register. It is read as
one when reading UCSRC. The URSEL must be one when writing the UCSRC.
• Bit 6 - UMSEL: USART Mode Select
This bit selects between asynchronous and synchronous mode of operation. Therefore
set this bit is zero for asynchronous mode.

8

• Bit 5:4 - UPM1:0: Parity Mode
Writing this bit is zero for non parity bit within data frame.
 • Bit 3 - USBS: Stop Bit Select
This bit selects the number of stop bits to be inserted by the transmitter. Set this bit is
zero for 1 stop bit.
• Bit 2:1 - UCSZ1:0: Character Size
The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data
bits (character size) in a frame the receiver and transmitter use. Set these bit are 1 that
mean set 8 bit data in a frame.
• Bit 0 - UCPOL: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOL bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCK).

- The USART transmission subroutine
A data transmission is initiated by loading the transmit buffer with the data to be trans-

mitted. The processor can load the transmit buffer by writing to the UDR (USART I/O Data
Register) I/O location. The buffered data in the transmit buffer will be moved to the shift reg-
ister when the shift register is ready to send a new frame. The shift register is loaded with new
data if it is in idle state (no ongoing transmission) or immediately after the last stop bit of the
previous frame is transmitted. When the shift register is loaded with new data, it will transfer
one complete frame at the rate given by the baud register, U2X bit or by XCK depending on
mode of operation. The USART transmit function based on polling of the Data Register Emp-
ty (UDRE) flag. When using frames with less than eight bits, the most significant bits written
to the UDR are ignored.

The programming process of a data transmission
-Step 1: Polling until UDRE flag in UCSRA is set
-Step 2: Move data in UDR, there is finished transmission data 1 byte.
-Step 3: Return subroutine

• Bit 5 - UDRE: USART Data Register Empty
The UDRE flag indicates if the transmit buffer (UDR) is ready to receive new data. If
UDRE is one, the buffer is empty, and therefore ready to be written. The UDRE flag
can generate a Data Register Empty interrupt (see description of the UDRIE bit).
UDRE is set after a reset to indicate that the transmitter is ready.

- The USART Reception subroutine
The receiver starts data reception when it detects a valid start bit. Each bit that follows

the start bit will be sampled at the baud rate or XCK clock, and shifted into the receive shift
register until the first stop bit of a frame is received. A second stop bit will be ignored by the
receiver. When the first stop bit is received, i.e., a complete serial frame is present in the re-
ceive shift register, the contents of the shift register will be moved into the receive buffer. The

9

receive buffer can then be read by reading the UDR I/O location. The USART receive func-
tion based on polling of the Receive Complete (RXC) flag. Then move data from the UDR
into SRAM which prepare for the next process.

The programming process of a reception data
-Step 1: Polling until RXC flag in UCSRA is set that mean receive data complete. In

this point it might receive data every time when RXC flag is set because we
set RXCIE flag in the UCSRB register of USART reception subroutine for
interrupt enable if receive data complete.

-Step 2: Move data from UDR to SRAM.
-Step 3: Check SRAM address equal to limited address (from 0x0060 to 0x0158). If it

is equal the address return to start address at 0x0060 again if it is not equal
continuous store data until to 0x0158.

-Step 4: Return subroutine

• Bit 7 - RXC: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when
the receive buffer is empty (i.e., does not contain any unread data). If the receiver is
disabled, the receive buffer will be flushed and consequently the RXC bit will become
zero. The RXC flag can be used to generate a Receive Complete interrupt (see descrip-
tion of the RXCIE bit).

3.2.3. Memory
The memory is a key part of embedded system design you must select an unnecessarily

solution but do need to ensure that you have enough memory. The memory has two part:
RAM is the sum of all internal buffer at 0x0000 to 0x005F, FIFOs (first in, first out) for store
data has address at 0x0060 to 0x0158 and stacks pointer has address at 0x045F, and ROM is
the sum of the program code and any ROM-based tables.

3.2.4. Interrupt
The interrupt are used to notify the processor of special events such as a timer that

timed out or a piece of hardware that needs attention. Counting the events that need interrupts
is straightforward, but be sure to take into account internal interrupt sources as well. An
interrupt can notify the processor when has new data, when a timer rolls over or when almost
any asynchronous event happens.

In this case we used interrupt vector when an interrupt is acknowledge. The interrupt
vector tell the processor where to go to service the interrupt. Timer/Counter is an interrupt
vector to execute when the time rolls over or compare is equal.

The Timer/Counter2 is a general purpose, single channel, 8bit Timer/Counter module.
We used the feature is CTC clear timer on compare match (Auto reload) and also compare
match interrupt source (OCF2).

10

- Initial setup Timer/Counter2 subroutine
-Step 1: Set WGM2, CS21 and CS20 flag in TCCR2 register for CTC mode and

fclk/32
-Step 2: Set OCF2 flag in TIFR register for output compare mode
-Step 3: Set OCIE2 flag in TIMSK register for enable compare match interrupt
-Step 4: Move OCR2 with 142 for set interrupt frequency
-Step 5: Return subroutine

3.3. GPS section
GPS has several operation modes and has a lot of options for setup before

transmission-reception data there is belong to system requirement and user need. The GPS has
standard specifications as bellow:

- Module Power Supply Voltage: 3.3V
- The maximum current draw in continuous operating: 88mA
- System: Full-duplex asynchronous
- Speed: 9600bps (Transfer data by serial communication)
- Start bit: 1bit
- Data length: 8bit
- Stop bit: 1bit
- Parity bit: None

In the operation mode the Rocket Project provide to use Full-Time Mode for transmit
data 124byte per second, this data is called a packet of GPS data or Periodical Data Output,
there are includable:

- Position data output (23-byte fixed length) include: Latitude, Longitude and
Altitude.

- Date/Time data output (10-byte fixed length)
- GPS Satellite Information Output (76-byte fixed length)
- Error Index Information Output (15-byte fixed length)

The commands code for setup Full-Time Mode operation is
- Header 0xC0
- Setup command 0xA3
- Output data items 0x8F
- Checksum 0xEC
- Terminator 0xCA

3.4. Store data section
This section use for store data from GPS and all of the data must be still stay either has

supply or not. In this case EEPROM is suitable for store exist data until rewrite new data,
EEPROM store data by 1byte into 1 address. Reference to the GPS transmission data before
write into EEPROM 124byte per second and as a requirement need to have 2byte header
synchronize pattern and 2byte for terminator, therefore the data packet or 1 frame is 128byte
will store into EEPROM in a second. The store data process, first store START command 1
frame packet than store data packet until has interrupt stop command to stop system and then
store STOP command 1 frame packet the system stop record data, as show in figure2 show the
store packet of command and data into EEPROM.

11

If the rocket launch about 1minute the data must be here:
1 sec = 124byte this is GPS packet
1 sec = 128byte this is EEPROM packet
1minute = 7.5kbyte

So the system needed the EEPROM able to store data more than 7.5kbyte and still
have data when has or doesn’t have power supply. The store process before record data into
EEPROM must wait the system found 3D position-fixing and occurred more than 5 satellites
or equal then start record data. If the EEPROM is full the system must stop record data
automatic by itself. And another once importance when put the circuit into waterproof box it
must spend a few minute so if the store data section is small, it will be full before the rocket
launch out.

Format 1 frame (128byte) of data packet from GPS write into EEPROM
Synchronous Pattern

of correct data
2 byte

Data packet from GPS
124 byte

Cyclic Redundancy Check (CRC)
2 byte

Syn. Pat.
0xE0

Syn. Pat.
0xE0

Data packet from GPS
124 byte

Checksum
1byte

Invert-Checksum
1 byte

Format 1 frame (128byte) of error data packet from GPS write into EEPROM
Synchronous Pattern

of error data
2 byte

Data packet from GPS
124 byte

Cyclic Redundancy Check (CRC)
2 byte

Syn. Pat.
0xE8

Syn. Pat.
0xE8

Error Data packet from GPS
124 byte

Checksum
1byte

Invert-Checksum
1 byte

Format 1 frame (128byte) of command write into EEPROM
Synchronous Pattern

of command
2 byte

Commands + Empty
124 byte

Cyclic Redundancy Check (CRC)
2 byte

Syn. Pat.
0xE4

Syn. Pat.
0xE4

Comman
d

1byte

Empty or Zero
123 byte

Checksum
1byte

Invert-Checksum
1 byte

12

1 frame packet of START command
128 byte

1 frame packet of STOP command
128 byte

1 frame packet of data from GPS
 128 byte

1 frame packet of data from GPS
 128 byte

Empty

Start record

Stop record

Figure3 show the store packet of command and data into EEPROM.

Figure4: Show the synchronous data timing of EEPROM

13

3.4.1. The EEPROM specification
We used The AT25HP256/512 provides 262,144/524,288 bits of serial electrically erasable
programmable read only memory (EEPROM) organized as 32,768/65,536 words of 8-bits
each. The device is optimized for use in many industrial and commercial applications where
high-speed, low-power, and low-voltage operation are essential. The AT25HP256/512 is de-
signed to interface directly with the synchronous serial peripheral interface (SPI) of the 6800
type series of microcontrollers as in Figure3: Show the synchronous serial peripheral interface
timing of EEPROM. The AT25HP256/512 utilizes an 8-bit instruction register. The list of in-
structions and their operation codes are contained in Table 2. All instructions, addresses, and
data are transferred with the MSB first and start with a high-to-low CS transition.

Table2: Instruction Set for the AT25HP256/512

The Table 3 show the Read Status Register instruction provides access to the status
register. The READY/BUSY and Write Enable status of the device can be determined by the
RDSR instruction. Similarly, the Block Write Protection bits indicate the extent of protection
employed. These bits are set by using the WRSR instruction. The three bits, BP0, BP1, and
WPEN are nonvolatile cells that have the same properties and functions as the regular memo-
ry cells (e.g. WREN, tWC, RDSR).

Table3: Status Register Format

Table4: Read Status Register Bit Definition

14

3.4.2. The EEPROM interface
The interface between microprocessor to EEPROM and depend on EEPROM used

serial interface specification therefore we used SPI serial interface for transfer data to
EEPROM. The transfer data process has write data into EEPROM process and read data from
EEPROM process. So we can separate on the programming process.
First, set write enable to EEPROM by:

- Set CS high-to-low
- Transmit 0000 X110 or 0x06 to EEPROM by SPI transmission subroutine
- Set CS low-to-high

Next, read the status register
- Set CS high-to-low
- Transmit 0000 X101 or 0x05 to EEPROM by SPI transmission subroutine
- Transmit 0000 0000 to EEPROM by SPI transmission subroutine for receive status

register
- Compare the status register equal to 0000 0010 or 0x02. If equal that mean the

Device is WRITE ENABLE
- Set CS low-to-high

Then, write data into EEPROM with 128byte or page write
- Set CS high-to-low
- Transmit write instruction 0000 0010 or 0x02 by SPI transmission subroutine
- Transmit higher address of EEPROM by SPI transmission subroutine
- Transmit lower address of EEPROM by SPI transmission subroutine
- Loop 2 times for transmit 2 byte data code synchronous pattern
- Read GPS data in SRAM
- Transmit data from SRAM to EEPROM 124byte by SPI transmission subroutine
- Transmit checksum
- Transmit invert checksum
- Set CS low-to-high

3.5. Radio wave section
This is the FM radio wave propagation in the air space, it has range between 76

to 90 MHz (used in Japan) if we provide the FM radio frequency in this range it is very easy
for receive by radio receiver. The proposed of the FM radio wave propagation to inform the
base station when the system found 3D position-fixing and occurred more than 5 satellite or
equal by change the frequency. In addition used the FM radio wave propagation to find
position of the rocket when the rocket down to the sea.

The FM radio wave specification, used the sound frequency 440Hz modulate in FM
radio wave. When the system start we set the sound frequency 2second sound-on and 2second
sound-off after occurred the 3D position-fixing and more than 5 satellite the oscillator
frequency will change 0.5second sound-on and 0.5second sound-off therefore the system start
record data.

When set an interrupt is 2.27ms = 440Hz. So the hexadecimal code of sound
frequency is:
- 0.5sec.-on and 0.5sec.-off = 1sec. the interrupt will count 440 times equal to 0x01B8
- 2sec.-on and 2sec.-off = 4 sec. the interrupt will count 1760 times equal to 0x06E0

15

In the programming process we used Timer/Counter2 in CTC clear timer on compare
match (Auto reload) mode operation for make oscillator:

- Wait for interrupt
- Count interrupted 4seconds.
- Set port for sound on and off, there is change a time
- Loop this value until the system occurred 3D position-fixing and 5 satellite will

change oscillator frequency to 1sec.
- Count interrupted 1second.
- Set port for sound on and off, there is change a time
- Loop here forever.

Controller
section

Radio wave
section

GPS
section

Store data
section

Start-Stop switch
section

Power supply
section

Controller section

Store data section
Radio wave section

GPS section

PC

Timer/Counter2
interrupt interface

SPI
interface

USART
interface

RS232

SPI
interface

Figure5: Show the Data Logger System diagram spare part

3.6. Transmission-Reception data to PC section
 It is interfacial between the Data Logger Circuit to PC by using IrDA serial
communication, where this interface has two parts: PC transmission commands code and
reception data from the Data Logger Circuit. The commands code include start command,
stop command, request data commands, acknowledge command and no acknowledge
command, all of these commands are only 1byte hexadecimal number. For the reception data,
the circuit transmit data to PC the format frame of data should has synchronous pattern and
data, it is quite comfortable for separate frame of data.

- Start command used for start the system
- Stop command used for stop the system
- Request command used for request the controller section to transmit data to PC
- Acknowledge command used for response the system ready
- No acknowledge command used for response the system not ready or error

Format transmission data packet from EEPROM to PC

16

<SOH>
1 byte

<BlockNO>
1 byte

<~BlockNO>
1 byte

<EEPROM Data 1 Frame>
Data 128 byte

<Check Sum>
1 byte

In fact, the IrDA interface is very difficult to interface so we change to used a spare
method such as use push-switch for start-stop system and read data directly from EEPROM by
PC as show in figure 3 show the Data Logger System diagram spare part.

4. Program structure and subroutine
4.1. The Main program

In a program should has the main program for descript the proposed and process of the
system. As the flowchart 1 is show the main program flow when power-on for start system.

4.1.1. Initial setup process
-Step 1: Setup initial I/O port and be long to circuit diagram, set stack pointer address

at 0x045F, set initial SPI interface subroutine and set initial USART interface
subroutine.

-Step 2: Set initial START and STOP switch are high status (high value=supply
voltage)

-Step 3: Set Initial oscillator frequency by set the first count value for
Timer/Couonter2 interrupt with 2second sound-on and 2second sound-off.

-Step 4: Set GPG power-on by set a port of microprocessor
-Step 5: RCALL Delay time 1sec. subroutine 5 times (5 seconds)
-Step 6: Setup GPS output by RCALL Periodical data output subroutine

4.1.2. Main routine process
-Step 7: RCALL Check 3D position-fixing and more than 5 satellite subroutine for

waited data and check position data packet until GPS data occurred 3D
position-fixing and more than 5 satellite which it might change FM oscillator
frequency to 0.5second sound-on and 0.5second sound-off by
Timer/Counter2 interrupt subroutine.

-Step 8: Check START switch it must be still waited here until START switch press
then jump to check EEPROM emptied subroutine. If the EEPROM is
empty there is continuous write START command in to EEPROM by write
START command into EEPROM subroutine and if the EEPROM is not
empty the check empty routine will shift to next address until found empty
address or if EEPROM is full the check empty routine must stop system.

-Step 9: RCALL Write data into EEPROM subroutine after pressed START button
the system will start record data into EEPROM. Here it has to check GPS
data packet subroutine there are correct or incorrect data and separate data
format therefore write into EEPROM.

-Step 10: The system might automatic stop record data when STOP switch was
pressed or EEPROM is full and before the system stop must used RCALL
write STOP command into EEPROM subroutine.

-Step 11: Stop the system.

17

Start

Initial setup

Set initial oscillator
frequency

- GPS power-on
- Delay 5 seconds

- Set GPS periodical data
output

Check
occurred 3D

position-fixing and
more than 5

satellites

Change oscillator
frequency

Write START commands
into EEPROM

Press
START
button?

Check
EEPROM
empty?

Shift address and
check until

EEPROM empty

Check
EEPROM

full?

 Record data from GPS
into EEPROM

Press STOP
button?

Check
EEPROM

full?

Stop

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Write STOP commands
into EEPROM

Flowchart 1 is show the main program flow

18

4.2. The subroutine program
4.2.1. Timer/Counter2 interrupt subroutine

This subroutine is classified into Set initial oscillator frequency and Change
oscillator frequency see in the flowchart 1. Both of these boxes include in the
Timer/Counter2 interrupt subroutine as show in the flowchart 2 show the way of
Timer/Counter2 interrupt subroutine how to the oscillator change with the frequency
440Hz.

Interrupt

Count interrupt for
ON-OFF oscillator

port with 4 sec.

Change
oscillator?

Check
osc. 440Hz

on?

Count interrupt for
set oscillator port is

‘H’ with 2 sec.

Count interrupt for
ON-OFF oscillator

port with 1 sec.

Check
osc. 440Hz

on?

Count interrupt for
set oscillator port is

‘H’ with 2 sec.

RETI

Y

Y

Y

N

N

N

Flowchart 2: Show the condition of the oscillator change by Timer/Counter2 interrupt
routine

The programming process
-Step1: Check if the oscillator is not changeless goes to next step and if it is changeless

go to step 5
-Step 2: Set the oscillator port ON-OFF with frequency 440Hz at 4 seconds
-Step 3: Set the oscillator port ‘H’ or ON with 2 seconds
-Step 4: Return step 1
-Step 5: Set the oscillator port ON-OFF with frequency 440Hz at 1 seconds
-Step 6: Set the oscillator port ‘H’ or ON with 2 seconds
-Step 7: Return step 5

4.2.2. Check 3D position-fixing and more than 5 satellite subroutine
There is checked 3D position-fixing with check bit 2 in byte 2nd of position data packet

if this bit is set that mean 3D position-fixing are occurred and if this bit is clear, there is not
occurred. For check more than 5 satellites is checked byte 21st must be equal or more than
0x05 in the position data packet.

19

The programming process:
-Step 1: Read data in SRAM and check header of position data packet is equal to 0xE0

or not. If not return to step1 again and if correct goes to next step
-Step 2: Check the next data which bit 2nd is set or not. If set goes to next step and if

clear return the routine.
-Step 3: Check the data at 21st byte of the position data packet if this byte is equal to or

more than 0x05 goes to next step and if it is not goes to step5
-Step 4: Set already found 3D position-fixing and more than 5 satellites then go to

step6
-Step 5: Not find 3D position-fixing and more than 5 satellites
-Step 6: Return subroutine

Check occurred 3D
position and 5 more than

satellites

Read data in SRAM

Check
data=0xe0

?

Check
data>=5

?

Check
bit 2 is set

?

Read data in SRAM

Read data in SRAM
at 21 byte

Set already found 3D
position and 5sat.

Not found 3D
position and 5sat.

RET

N

N

N

Y

Y

Y

Flowchart 3: Check the occurred 3D position-fixing and more than 5 satellites routine

20

4.2.3. Check EEPROM emptied subroutine
-Step 1: Clear CS
-Step 2: Send read status register 0x05 to EEPROM by SPI transmission subroutine
-Step 3: Send DUMMY data 0x00 to EEPROM by SPI transmission subroutine for

receive EEPROM status
-Step 4: If EEPROM status equal to 0x00 goes to next step and if it is not, return to

step1
-Step 5: Send read instruction 0x03 by SPI transmission subroutine
-Step 6: Send index EEPROM high address by SPI transmission subroutine
-Step 7: Send index EEPROM low address by SPI transmission subroutine
-Step 8: Send DUMMY data 0x00 to EEPROM by SPI transmission subroutine for

receive a data
-Step 9: Set CS
-Step 10: If that data is equal to 0x00 goes to step12 and if it is not, goes to next step
-Step 11: Increase EEPROM address with 0x80 and goes to step1
-Step 12: Return subroutine.

4.2.4. Write START command into EEPROM subroutine
-Step 1: RCALL write EEPROM enable subroutine
-Step 2: RCALL write START command subroutine
-Step 3: RCALL increase EEPROM address subroutine

Write START command
into EEPROM

Check
EEPROM

empty?

 Record data from GPS
into EEPROM

N

Y

Write START command
subroutine

Write EEPROM enable
subroutine

Increase EEPROM address
subroutine

1

2

1

2

Flowchart 4: Show the program flow in Write START command into EEPROM subroutine

4.2.5. Write STOP command into EEPROM subroutine
The step program flow is the same with Write START command into

EEPROM subroutine only change START command code (0xF8) to STOP
command code (0xF4)

4.2.6. Write data into EEPROM subroutine
As in flowchart 5 show the flow of write data into EEPROM subroutine

-Step 1: Clear CS
-Step 2: Send write instruction 0x02 by SPI transmission subroutine

21

-Step 3: Send index EEPROM high address by SPI transmission subroutine
-Step 4: Send index EEPROM low address by SPI transmission subroutine
-Step 5: Send data synchronize pattern (0xE0 if the data is corrected and 0xE8 if the

data is not corrected) 2byte into EEPROM by SPI transmission subroutine
-Step 6: Send data into EEPROM 124byte (page writing) by SPI transmission

subroutine
-Step 7: Send checksum 1byte by SPI transmission subroutine
-Step 8: Send invert-checksum 1byte by SPI transmission subroutine
-Step 9: Set CS
-Step 10: Return subroutine

Write data into

EEPROM subroutine

Check
124byte?

Clear CS

-Send write instruction 0x02
-Send EEPROM address high
-Send EEPROM address low

-Send 2 byte data
synchronous pattern

Read data in SRAM

Write data into
EEPROM

-Write checksum into
EEPROM

-Write invert-checksum
 into EEPROM

Set CS

RET

N

Y

Flowchart 5: The write data into EEPROM subroutine process flow

22

4.2.7. Check GPS data packet subroutine
The check GPS data packet subroutine has programming process flow as in flowchart

6.

-Step 1: Read data (Header code of position data packet) from SRAM
-Step 2: Check header code packet 0xE0. If equal goes to next step and if not return to

step1
-Step 3: Increase SRAM address 21 times and then read data in SRAM
-Step 4: Compare the checksum if equal goes to next step and if not goes to step26
-Step 5: Read data from SRAM
-Step 6: Check terminator code packet 0xEA. If equal goes to next step and if not

return to step26
-Step 7: Read data (Header code of Data/Time data packet) from SRAM
-Step 8: Check header code packet 0xE1. If equal goes to next step and if not return to

step26
-Step 9: Increase SRAM address 8 times and then read data in SRAM
-Step 10: Compare the checksum if equal goes to next step and if not goes to step26
-Step 11: Read data from SRAM
-Step 12: Check terminator code packet 0xEA. If equal goes to next step and if not

return to step26
-Step 13: Read data (Header code of GPS satellite information data packet) from

SRAM
-Step 14: Check header code packet 0xE2. If equal goes to next step and if not return

to step26
-Step 15: Increase SRAM address 74 times and then read data in SRAM
-Step 16: Compare the checksum if equal goes to next step and if not goes to step26
-Step 17: Read data from SRAM
-Step 18: Check terminator code packet 0xEA. If equal goes to next step and if not

return to step26
-Step 19: Read data (Header code of error index information data packet) from SRAM
-Step 20: Check header code packet 0xE3. If equal goes to next step and if not return

to step26
-Step 21: Increase SRAM address 13 times and then read data in SRAM
-Step 22: Compare the checksum if equal goes to next step and if not goes to step26
-Step 23: Read data from SRAM
-Step 24: Check terminator code packet 0xEA. If equal goes to next step and if not

return to step26
-Step 25: Set the GPS data packet is correct and goes to step 27
-Step 26: Set the GPS data packet is not correct
-Step 27: Return subroutine

23

Check GPS data
packet subroutine

Check
data=0xe0?

Read data in SRAM

Check
checksum?

Read data in SRAM 21
byte (Position packet)

Check
data=0xea?

Read data in SRAM

Check
data=0xe1?

Read data in SRAM

Check
checksum?

Read data in SRAM 8
byte (Date/time packet)

Check
data=0xea?

Read data in SRAM

Check
data=0xe2?

Read data in SRAM

Check
checksum?

Read data in SRAM 74
byte (Satellite packet)

Check
data=0xea?

Read data in SRAM

Check
checksum?

Read data in SRAM 13
byte (Error Satellite

packet)

Check
data=0xe3?

Read data in SRAM

Check
data=0xea?

Read data in SRAM

RET

Correct data

Error data

RET

N

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

N

N

N

N

N

Flowchart 6: Show the check GPS data packet subroutine process flow

24

4.2.8. Write EEPROM enable subroutine
-Step 1: Clear CS
-Step 2: Send write enable latch instruction 0x06 by SPI transmission subroutine
-Step 3 Set CS
-Step 4: Clear CS
-Step 5: Send read status register 0x05 to EEPROM by SPI transmission subroutine
-Step 5: Send DUMMY data 0x00 to EEPROM by SPI transmission subroutine for

receive EEPROM status
-Step 6: If this status is equal to 0x02 goes to next step and if it is not, goes to step4
-Step 7: Return subroutine

4.2.9. Write START command subroutine
-Step 1: Clear CS
-Step 2: Send write instruction 0x02 by SPI transmission subroutine
-Step 3: Send index EEPROM high address by SPI transmission subroutine
-Step 4: Send index EEPROM low address by SPI transmission subroutine
-Step 5: Send synchronize pattern (0xE4) 2byte into EEPROM by SPI transmission

subroutine
-Step 6: Send START command (0xF8) 1byte by SPI transmission subroutine
-Step 7: Send zero (0x00) 123byte by SPI transmission subroutine
-Step 8: Send checksum 1byte by SPI transmission subroutine
-Step 9: Send invert-checksum 1byte by SPI transmission subroutine
-Step 10: Set CS
-Step 11: Return subroutine

4.2.10. Increment EEPROM address subroutine
-Step 1: Add the EEPROM low address with 0x80
-Step 2: Compare low address equal to 0x00. If equal goes to step5 and if not goes to

next step
-Step 3: Compare high address equal to 0xFF. If equal goes to next step and if it is not,

goes to step 6
-Step 4: Set EEPROM status is full and goes to step6
-Step 5: Increase high address
-Step 6: Return subroutine

4.2.11. Setup GPS (Periodical data output) subroutine
-Step 1: Load header value 0xC0 into UDR register
-Step 2: CALL USART transmission routine
-Step 3: Load setup command 0xA3 into UDR register
-Step 4: CALL USART transmission routine
-Step 5: Load output data items 0x8F into UDR register
-Step 6: CALL USART transmission routine
-Step 7: Load checksum 0xEC into UDR register
-Step 8: CALL USART transmission routine
-Step 9: Load terminator 0xCA into UDR register
-Step 10: CALL USART transmission routine

25

4.2.12. Limited SRAM address subroutine
-Step 1: Compare SRAM high address, if it is less than 0x01, goes to step4 and if not

goes next step
-Step 2: Compare SRAM low address, if it is equal to 0x58, goes to next step and if

not goes step4
-Step 3: Clear SRAM address and return value at 0x0060
-Step 4: Return subroutine

4.2.13. Delay time 1sec.
-Step 1: RCALL Delay time subroutine 75msec..
-Step 2: Count 14 times if it is not equal goes to step1 and if equal goes to next step
-Step 3: Return subroutine.

Delay time 75msec subroutine.
-Step 1: RCALL Delay time 300usec subroutine.
-Step 2: Count 250 times if it is not equal goes to step1 and if equal goes to next step
-Step 3: Return subroutine.

Delay time 300usec subroutine.
-Step 1: Used no operation (nop) 1.5usec.
-Step 2: Count 240 times if it is not equal goes to step1 and if equal goes to next step
-Step 3: Return subroutine.

5. Conclusion
The Rocket Project is proposed of development the embedded systems, software

engineering, technical education documents and teaching materials. So the research
requirement we used the requirement and the specification of the system:

- Hardware requirement: small size (less than 30x30mm), light (weight less than
40g), waterproof and floating, power supply can use more than 30minutes at
minimum current 150mA, set GPS in Full time mode operation and EEPROM
must be suitable in period of store data time.

- Software requirement: definition of every function, self-test system if the system is
fail should have alarm and if the system is passed go on to the next process.

In this document also descript the system specification, devices interface and
programming main routine and subroutine of the Data Logger System which how can the
system operate and record data process. There is very importance for used these document to
improve and develop the embedded systems and software go on to high level in the near
future. For the data in EEPROM we will upload and analyze in PC to find the maximum
height of rocket fly out and than comparison with ground record it can calculate with 3 angles
record.

26

	Contents
	1. Introduction
	2. Exp. requirement
	3. The Data Logger System
	3.1 Power supply section
	3.2 Controller section
	3.3 GPS section
	3.4 Store data section
	3.5 Radio wave section
	3.6 Transmission-Receeption data to PC section

	4. Program structure & subroutine
	4.1 The Main program
	4.2 The subroutine program

	5. Conclusion

