

第3章 Vivado HL WebPACK Editionで高位合成にチャレンジ(AXI4-Liteスレーブ編)

AXI4-Lite版乗算IPコアを ARMプロセッサから制御する

小野 雅晃 Masaaki Ono

前章で作成したAXI4Liteバスに接続できる乗算IPコアを、評価ボードZYBOに実装し、ARMプロセッサから 制御してみましょう. 高位合成にはVivado HLSを使いましたが、FPGAへの実装はVivadoを使います. また. Vivado HLSは高位合成だけでなく、生成したIPコアのデバイス・ドライバも自動で生成します、最後はSDKを 起動して、ARMプロセッサで実行するアプリケーション・プログラムを作成して動作を確認してみます。

1. AXI4-Lite版乗算IPの接続方法

前章で作成した AXI4-Lite 版乗算 IP は、Zvng 内で どのように使用されるのでしょうか. まずはZyngの 内部構造について簡単に説明したいと思います。

Zyngの内部構造

ZyngはCPUにFPGAが付いている構造です. CPU 部分はPS (Processing System)と呼ばれていて. ARM Cortex-A9プロセッサが2つ搭載されています.

プロセッサはFPUとNEONと呼ばれるSIMDユ ニットと、それぞれ32Kバイトの命令キャッシュと データ・キャッシュが搭載されています. またPSに は、DDRのSDRAMコントローラも内蔵され、 ZYBOの場合は512MバイトのDDR3 SDRAMが接続 されています. I/OペリフェラルはUSB, ギガビット Ethernet. $SD n - k \cdot l > p - z - z$, CAN, I²C. SPIが搭載されています.

FPGA部分はPL (Programmable Logic)と呼ばれ ています. PSとPLの接続は、PS側にAXIバスのポー トが用意されているので、PL側のAXIバスに接続す ることによって、PSとPLがデータのやり取りをする ことができます. PS側には、AXI GPポート (General-Purpose Ports) がマスタとスレーブの2ポー トずつ、AXI HPポート (High-Performance Ports) がスレーブとして4ポート、キャッシュに読み書きで きるAXI ACPポート (Accelerator Coherency Port) がスレーブとして1ポートあります(図1.次頁).

乗算IPの接続方法

今回の乗算IP (mulit apuint IP) をARMプロセッ サに接続するためには、AXI GPポートのマスタ・ ポートからPL部にAXIインターコネクトを追加し て、そこから乗算回路IPに接続します。その様子を 図2に示します. なお. 乗算IPはアドレス・マップ されて、ARM プロセッサから使用されます.

図2 乗算IPの接続方法

2. Vivadoを使った乗算IPコアの FPGA への実装

それでは、 前章で作成した AXI4-Lite 版乗算 IPを FPGA に実装してみましょう.

Vivadoによる新規プロジェクトの作成

Vivado 2016.1 を起動します.

Create New Project アイコンをクリックして、新 規プロジェクトを作成します[図3(a)].

するとNew Projectダイアログが開きます. Create a New Vivado Project画面では、Nextボタンをク リックします.

次のProject Name 画面で、Project location を適当 なところに設定してください. そしてProject Name に "multi ex2" と入力してください (名前は各自自由 に決めてもOK). そしてNextボタンをクリックしま す[図3(b)].

次のProject Type画面からDefault Part画面まで は、デフォルトの設定のままNextボタンをクリック します.

Default Part 画面では、Select を "Board" に設定し、 Venderは"digilentinc.com"を選択, Display Nameか ら "Zvbo" を選択します. 下のDipslav Nameに表示 された "Zvbo" をクリックし、Next ボタンをクリック します[図3(c)]. なおZYBOを選択するには、コラ ムで説明する作業を予め行っておく必要があります.