特集

表示回路だって高位合成で作れる!

一般的に高位合成による回路設計は、クロック単位でタイミングを制御するバス・インターフェースの記述に は向かないとされています.しかし、PIPELINE指示子とそのオプションを適切に使えば、狙ったタイミングで 信号を生成することが可能です.乗算回路のテストではスイッチとLEDしか使えませんでしたが、表示回路であ ればZYBOに搭載されているVGA出力コネクタから画像を表示することができます.

写真1 ディスプレイ・コントローラの出力画像

● ディスプレイ・コントローラの仕様

Vivado HLSの応用例としてディスプレイ・コント ローラを作成してみましょう.ディスプレイ・コント ローラは出力するべき信号のタイミングが決まってい るので,高位合成で作るのは無謀だと思いましたが, やってみたらうまくいきました.

今回作成するディスプレイ・コントローラの表示画 像は,写真1に示すように全画面を4分割して,右上 が赤,左上が緑,右下が青,左下が白を表示します.

ディスプレイ・コントローラの解像度はSVGA解 像度の横800ピクセル,縦600行とします. ピクセル・ クロックは40MHz(周期は25ns)で,フレームレート は60fps(frame per second)です. 表1に信号仕様を 示します.

1. 新規プロジェクトの作成と Cソース・ファイルの追加

 ディスプレイ・コントローラの新規プロジェクト を作成

Vivado HLS 2016.1 で新規プロジェクトを作成しま

表1 ディスプレイ・コントローラのタイミング仕様

項目		値
水平同期系	画像表示領域	800クロック
	水平フロント・ポーチ	40クロック
	水平同期信号	128クロック
	水平バック・ポーチ	88クロック
垂直同期系	画像表示領域	600 ライン
	垂直フロント・ポーチ	1ライン
	垂直同期信号	4ライン
	垂直バック・ポーチ	23 ライン

しょう. まずは, Vivado HLS 2016.1を起動します. 起動画面で, Create New Projectをクリックして, 新規プロジェクトを作成します[図1(a)].

New Vivado HLS ProjectダイアログのProject Configuration が表示されます. Location に適当なフォ ルダを指定して, Project nameにdisplay_cont(名前 は何でも構わない)と入力し, Nextボタンをクリック します[図1(b)].

次 の Add/Remove Files の Add/Remove C-based source files, その次の Add/Remove Filesの Add/ Remove C-based testbench filesは,何も入力しない でNext ボタンをクリックします.

次にSolution Configurationが表示されます. Clock のPeriodはSVGA解像度のピクセル・クロックの40 MHzの周期25 (ns)を入力します. FPGAの種類を選 択するためにPart Selectionの「…」ボタンをクリック します[図1 (c)].

するとDevice Selection Dialogが表示されます. Select はParts に設定されていると思います. Filter のProduct CategoryをGeneral Purpose に, Family をzynq に, Sub-Familyをzynq に, Packageをclg400 に, Speed gradeを-1に設定します. すると,下の ウィンドウに xc7z010clg400-1が表示されるので選択 してOK ボタンをクリックします[図1(d)].